결정 계수를 계산하는 방법

Posted on
작가: John Stephens
창조 날짜: 25 1 월 2021
업데이트 날짜: 20 십일월 2024
Anonim
확률,통계(1)_결정계수
동영상: 확률,통계(1)_결정계수

결정 계수 R 제곱은 회귀 방정식이 데이터에 얼마나 잘 맞는지를 측정하는 통계로 선형 회귀 이론에서 사용됩니다. 종속 변수 Y와 독립 변수 X 사이의 상관 정도를 제공하는 것은 R의 제곱, 상관 계수이며, R은 -1에서 +1 사이입니다. R이 +1이면, Y는 X에 완벽하게 비례하고, X의 값이 어느 정도 증가하면 Y의 값은 같은 정도로 증가합니다. R이 -1이면 Y와 X 사이에 완벽한 음의 상관 관계가 있습니다. X가 증가하면 Y는 같은 비율로 감소합니다. 반면에 R이 0이면 X와 Y 사이에 선형 관계가 없습니다. R 제곱은 0에서 1까지 다양합니다. 이는 회귀 방정식이 데이터에 얼마나 잘 맞는지에 대한 아이디어를 제공합니다. R 제곱이 1이면 데이터에있는 모든 점을 가장 잘 맞는 선이 통과하고 관찰 된 Y 값의 모든 변동은 X 값과의 관계로 설명됩니다. 예를 들어 R 제곱을 얻는 경우 .80의 값, Y의 값의 변화의 80 %는 X의 관측 된 값과의 선형 관계에 의해 설명된다.

    X와 Y 값의 곱의 합을 계산하고이 값에 "n "을 곱합니다. X와 Y 값의 합 곱의 곱에서이 값을 뺍니다.이 값을 S1로 표시 : S1 = n (? XY)-(? X) (? Y)

    X 값의 제곱의 합을 계산하고,이 값에 "n, "을 곱한 후 X 값의 합의 제곱에서이 값을 뺍니다. P1으로 표시 : P1 = n (? X2) – (? X) 2 P1의 제곱근을 취하면 P1 '으로 표시됩니다.

    Y 값의 제곱의 합을 계산하고,이 값에 "n, "을 곱한 다음 Y 값의 합의 제곱에서이 값을 뺍니다. Q1으로 나타냅니다. Q1 = n (? Y2) – (? Y) 2 Q1의 제곱근을 취합니다.

    S1을 P1 '과 Q1'의 곱으로 나누어 상관 계수 R을 계산합니다. R = S1 / (P1 '* Q1')

    R의 제곱을 취하여 결정 계수 R2를 구하십시오.