대수 II와 삼각법의 차이점

Posted on
작가: Peter Berry
창조 날짜: 13 팔월 2021
업데이트 날짜: 13 십일월 2024
Anonim
대수 02 _pre. Binary Structure, Isomorphism
동영상: 대수 02 _pre. Binary Structure, Isomorphism

콘텐츠

고등학교 수학, 대수학 II 및 삼각법의 긴 필수 요소는 종종 졸업 및 대학 입학을 위해 필요한 과정입니다. 대수학 II와 삼각법 모두 수학 문제 해결에 관련되어 있지만, 대수학은 방정식과 부등식 해결에 중점을 두는 반면 삼각법은 삼각형에 대한 연구이며 측면이 각도에 연결되는 방식입니다.

대수 II 코스워크

보다 기하학적 인 초점을 가진 삼각법과 달리 대수 II는 선형 방정식과 불평등 해결을 강조합니다. 교과 과정은 다항식, 역함수, 지수, 대수, 2 차 및 합리적인 함수를 다룹니다. 대수학 II 과정에서 다루었던 다른 주제에는 힘, 뿌리 및 급진; 정사각형과 입방체 뿌리와 합리적인 함수를 그래프로 표시; 역 및 관절 변이, 분수 표현, 좌표 기하학, 복소수, 행렬 및 행렬식, 복소수, 시퀀스 및 시리즈 및 확률.

대수 II를위한 실제 응용

대수학 II는 과학 및 비즈니스에서 실용적인 응용 프로그램을 찾습니다. 대수 II 함수와 개념은 통계 및 확률에 사용됩니다. Algebra II를 사용하는 다른 직업 분야에는 소프트웨어 및 컴퓨터 공학, 의학, 약사, 은행 및 금융 및 보험이 포함됩니다. 대수 II 개념은 보험 계리사 및 사망률 표의 기초를 형성합니다. 경찰 및 사고 조사관은 대수 II를 사용하여 차량 속도를 결정합니다. 재무 분석가는 Algebra II를 사용하여 투자 수익률을 계산합니다. 기상 학자들은 날씨 패턴을 결정할 때 대수 II를 사용합니다.

삼각법 교과

삼각법은 측면과 각도에 중점을 둡니다. 주요 용어에는 사인, 코사인 및 탄젠트, 직각, 직각 삼각형, 경사, 호 및 복사가 포함됩니다. 삼각법 과정은 피타고라스 정리, 각도 측정; 사인, 화음, 코사인 및 직각 삼각형의 관계; 복사 및 원호 길이, 상승 각도 및 함몰, 접선 및 경사 결정, 삼각법 또는 직각 삼각형 및 비스듬한 삼각형, 사인 및 코사인 법칙 및 삼각형 영역 파악. 사인, 코사인, 탄젠트, 코탄젠트, 시컨트 및 코시컨트와 같은 숫자 함수가 아닌 기하 함수가 다룹니다. 삼각법은 또한 아크 사인, 아크 코사인 및 아크 탄젠트와 같은 역함수를 다룹니다.

삼각법을위한 실용적인 응용

삼각법은 순수한 형태의 수학으로 간주됩니다. 확률 및 통계에 주로 사용되는 대수 II와 달리 삼각법은 과학에서 사용됩니다. 삼각법 응용 프로그램 중 일부에는 천문학, 탐색, 공학, 물리학 및 지리학이 포함됩니다. 삼각법은 미적분학의 전제 조건으로 간주됩니다.

대수 II의 중요성

삼각법이 많은 과학적 발견의 기초를 형성했지만 대수학 II가 중요 해지고 있습니다. Anthony Carnevale과 Alice Desrochers, Educational Testing Service에서 수행하고 Washington Post에서보고 한 최상위 직종을 수행 한 개인에 대한 연구에 따르면 84 %가 대수학 II 또는 그 이상의 상위 고등학교 수학을 취한 것으로 나타났습니다 코스. 이 연구로 무장 한 많은 학군은 졸업을 위해 대수학 II를 요구하고 있습니다.