콘텐츠
절대 값 불평등을 해결하는 것은 절대 값 방정식을 푸는 것과 매우 유사하지만 명심해야 할 몇 가지 추가 세부 사항이 있습니다. 그것은 절대 가치 방정식을 푸는 데 편하게 도움이되지만, 여러분도 함께 배우면 괜찮습니다!
절대 값 불평등의 정의
우선, 절대 값 불평등 절대 값 표현과 관련된 불평등입니다. 예를 들어
| 5 + 엑스 | − 10> 6은 부등호,> 및 절대 값 표현식을 갖기 때문에 절대 값 부등식입니다. | 5 + 엑스 |.
절대 값 불평등을 해결하는 방법
그만큼 절대 값 불평등을 해결하는 단계 절대 값 방정식을 푸는 단계와 매우 비슷합니다.
1 단계: 불평등의 한쪽에서 절대 값 표현을 분리합니다.
2 단계: 불평등의 긍정적 인 "버전"을 푸십시오.
3 단계 : 부등식의 반대쪽에있는 양에 −1을 곱하고 부등식 부호를 뒤집어 부등식의 음의 "버전"을 푸십시오.
한 번에 많은 것을 수행해야하므로 단계를 안내하는 예제가 있습니다.
불평등 해결 엑스: | 5 + 5_x_ | − 3> 2.
이렇게하려면 | 5 + 5_x_ | 불평등의 왼쪽에 양쪽에 3을 추가하기 만하면됩니다.
| 5 + 5_x_ | − 3 (+ 3)> 2 (+ 3)
| 5 + 5_x_ | > 5.
이제 우리가 해결해야 할 불평등의 두 가지 "버전"이 있습니다 : 양의 "버전"과 음의 "버전".
이 단계에서는 상황이 5 + 5_x_> 5 인 것으로 가정합니다.
| 5 + 5_x_ | > 5 → 5 + 5_x_> 5.
이것은 단순한 불평등입니다. 당신은 단지 해결해야합니다 엑스 평소와 같이. 양변에서 5를 빼고 양변을 5로 나눕니다.
5 + 5_x_> 5
5 + 5_x_ (− 5)> 5 (-5) (양쪽에서 5를 뺍니다)
5_x_> 0
5_x_ (÷ 5)> 0 (÷ 5) (양쪽을 5로 나눕니다)
엑스 > 0.
나쁘지 않다! 우리의 불평등에 대한 한 가지 가능한 해결책은 엑스 > 0. 이제 절대 값이 포함되므로 시간이 또 다른 가능성을 고려합니다.
이 다음 비트를 이해하려면 절대 값의 의미를 기억하는 데 도움이됩니다. 절대 값 0에서 숫자 거리를 측정합니다. 거리는 항상 양수이므로 9는 0에서 9 단위 떨어져 있지만 −9는 0에서 9 단위 떨어져 있습니다.
그래서 | 9 | = 9이지만 | −9 | = 9입니다.
이제 위의 문제로 돌아갑니다. 위의 작업은 | 5 + 5_x_ | > 5; 다시 말해, "무언가"의 절대 값은 5보다 큽니다. 이제 5보다 큰 양수는 5보다 0에서 멀어 질 것입니다. 첫 번째 옵션은 5 + 5_x_ 인 "something"이 5보다 큽니다.
즉 : 5 + 5_x_> 5.
위의 시나리오는 2 단계에서 다루었습니다.
이제 조금 더 생각해보십시오. 5 대가 0에서 멀어지면 다른 것은 무엇입니까? 음, 5는 음입니다. 그리고 음수 5의 숫자 라인을 따라 더 멀리있는 것은 0에서 멀어 질 것입니다. 따라서 우리의 "무언가"는 음수보다 음수가 아닌 음수 일 수 있습니다. 그것은 더 큰 소리가 나지만 기술적으로는 이하 숫자 라인에서 음의 방향으로 움직이므로 음수 5입니다.
따라서 우리의 "뭔가"5 + 5x는 -5보다 작을 수 있습니다.
5 + 5_x_ <−5
대수적으로이 작업을 수행하는 빠른 방법은 부등식의 다른쪽에있는 양에 음수를 곱한 다음 부등식 부호를 뒤집는 것입니다.
| 5 + 5 배 | > 5 → 5 + 5_x_ <− 5
그런 다음 평소대로 해결하십시오.
5 + 5_x_ <-5
5 + 5_x_ (−5) <−5 (− 5) (양쪽에서 5 빼기)
5_x_ <−10
5_x_ (÷ 5) <−10 (÷ 5)
엑스 < −2.
불평등에 대한 두 가지 가능한 해결책은 엑스 > 0 또는 엑스 <-2. 불평등이 여전히 사실인지 확인하기 위해 몇 가지 가능한 솔루션을 연결하여 자신을 확인하십시오.
솔루션이없는 절대 값 불평등
있을 시나리오가 있습니다 절대 가치 불평등에 대한 해결책이 없음. 절대 값은 항상 양수이므로 음수 이하일 수 없습니다.
그래서 | 엑스 | <-2는 해결책이 없다 절대 값 표현의 결과는 양수 여야하기 때문입니다.
간격 표기법
주요 예제에 대한 솔루션을 작성하려면 간격 표기법숫자가 어떻게 보이는지 생각해보십시오. 우리의 솔루션은 엑스 > 0 또는 엑스 <-2. 숫자 라인에서, 그것은 0에서 열린 점으로, 양의 무한대까지 연장되는 선으로, -2에서 열린 점으로, 음의 무한대로 멀어지게 연장됩니다. 이 솔루션들은 서로를 향하지 않고 서로를 향하고 있으므로 각 조각을 따로 가져 가십시오.
숫자 라인의 x> 0의 경우 0에 열린 점이 있고 무한대로 확장되는 선이 있습니다. 간격 표기법에서 열린 점은 괄호 ()로 표시되고 닫힌 점 또는 ≥ 또는 ≤의 부등호는 괄호를 사용합니다. 그래서 엑스 > 0이면 (0, ∞)를 씁니다.
나머지 절반은 엑스 <-2, 숫자 라인에 -2의 열린 점이 있고 화살표는 -∞까지 확장됩니다. 구간 표기법에서이 값은 (−∞, -2)입니다.
구간 표기법에서 "또는"은 공용 부호 ∪입니다.
따라서 구간 표기법의 해는 (−∞, −2) ∪ (0, ∞)입니다.